Liste des équipements et des matières non nucléaires dont la fabrication est à déclarer dans le formulaire E et dont l'exportation est à déclarer dans le formulaire T

i. FABRICATION DE BOLS POUR CENTRIFUGEUSES OU ASSEMBLAGE DE CENTRIFUGEUSES GAZEUSES

Par bols pour centrifugeuses, on entend les cylindres à paroi mince décrits sous 5.1.1.b) dans l'annexe II.

Par centrifugeuses gazeuses, on entend les centrifugeuses décrites dans la Note d'introduction sous 5.1 dans l'annexe II.

ii. FABRICATION DE BARRIÈRES DE DIFFUSION

Par barrières de diffusion, on entend les filtres minces et poreux décrits sous 5.3.1.a) dans l'annexe II.

iii. FABRICATION OU ASSEMBLAGE DE SYSTÈMES À LASER

Par systèmes à laser, on entend des systèmes comprenant les articles décrits sous 5.7 dans l'annexe II.

iv. FABRICATION OU ASSEMBLAGE DE SÉPARATEURS ÉLEC-**TROMAGNÉTIQUES**

Par séparateurs électromagnétiques, on entend les articles visés sous 5.9.1 dans l'annexe II, qui contiennent les sources d'ions décrites sous 5.9.1.a).

v. FABRICATION OU ASSEMBLAGE DE COLONNES OU D'ÉQUIPEMENTS D'EXTRACTION

Par colonnes ou équipements d'extraction, on entend les articles décrits sous 5.6.1, 5.6.2, 5.6.3, 5.6.5, 5.6.6, 5.6.7 et 5.6.8 dans l'annexe II.

vi. FABRICATION DE TUYÈRES OU DE TUBES VORTEX POUR LA SÉPARATION AÉRODYNAMIQUE

Par tuyères ou tubes vortex pour la séparation aérodynamique, on entend les tuyères et tubes vortex de séparation décrits respectivement sous 5.5.1 et 5.5.2 dans l'annexe II.

vii. FABRICATION OU ASSEMBLAGE DE SYSTÈMES GÉNÉRA-**TEURS DE PLASMA D'URANIUM**

Par systèmes générateurs de plasma d'uranium, on entend les systèmes décrits sous 5.8.3 dans l'annexe II.

viii. FABRICATION DE TUBES DE ZIRCONIUM

Par tubes de zirconium, on entend les tubes décrits sous 1.6 dans l'annexe II.

ix. FABRICATION D'EAU LOURDE OU DE DEUTÉRIUM OU AMÉLIORATION DE LEUR QUALITÉ

Par eau lourde ou deutérium, on entend le deutérium, l'eau lourde (oxyde de deutérium) et tout composé de deutérium dans lequel le rapport atomique deutérium/hydrogène dépasse 1/5 000.

x. FABRICATION DE GRAPHITE DE PURETÉ NUCLÉAIRE

Par graphite de pureté nucléaire, on entend du graphite d'une pureté supérieure à cinq parties par million d'équivalent en bore et d'une densité de plus de 1,50 g par cm³.

xi. FABRICATION DE CHÂTEAUX POUR COMBUSTIBLE IRRADIÉ

Par château pour combustible irradié, on entend un récipient destiné au transport et/ou à l'entreposage de combustible irradié qui assure une protection chimique, thermique et radiologique, et qui dissipe la chaleur de décroissance pendant la manipulation, le transport et le stockage.

xii. FABRICATION DE BARRES DE COMMANDE POUR RÉACTEUR

Par barres de commande pour réacteur, on entend les barres décrites sous 1.4 dans l'annexe II.

XIII. FABRICATION DE RÉSERVOIRS ET RÉCIPIENTS DONT LA SÛRETÉ-CRITICITÉ EST ASSURÉE

Par réservoirs et récipients dont la sûreté-criticité est assurée, on entend les articles décrits sous 3.2 et 3.4 dans l'annexe II.

xiv. FABRICATION DE MACHINES À DÉGAINER LES ÉLÉ-MENTS COMBUSTIBLES IRRADIÉS

Par machines à dégainer les éléments combustibles irradiés, on entend les équipements décrits sous 3.1 dans l'annexe II.

XV. CONSTRUCTION DE CELLULES CHAUDES

Par cellules chaudes, on entend une cellule ou des cellules interconnectées ayant un volume total d'au moins 6 m³ et une protection égale ou supérieure à l'équivalent de 0,5 m de béton d'une densité égale ou supérieure à 3,2 g/cm³, et disposant de matériel de télémanipulation.

Liste des équipements et des matières non nucléaires dont l'exportation est à déclarer dans le formulaire T

1. RÉACTEURS ET ÉQUIPEMENTS POUR RÉACTEURS

1.1. Réacteurs nucléaires complets

Réacteurs nucléaires pouvant fonctionner de manière à maintenir une réaction de fission en chaîne auto-entretenue contrôlée, exception faite des réacteurs de puissance nulle dont la production maximale prévue de plutonium ne dépasse pas 100 grammes par an.

Note explicative

Un « réacteur nucléaire » comporte essentiellement les articles se trouvant à l'intérieur de la cuve de réacteur ou fixés directement sur cette cuve, le matériel pour le réglage de la puissance dans le cœur et les composants qui renferment normalement le fluide de refroidissement primaire du cœur du réacteur, entrent en contact direct avec ce fluide ou permettent son réglage.

Il n'est pas envisagé d'exclure les réacteurs qu'il serait raisonnablement possible de modifier de façon à produire une quantité de plutonium sensiblement supérieure à 100 grammes par an. Les réacteurs conçus pour un fonctionnement prolongé à des niveaux de puissance significatifs, quelle que soit leur capacité de production de plutonium, ne sont pas considérés comme étant des « réacteurs de puissance nulle ».

1.2. Cuves de pression pour réacteurs

Cuves métalliques, sous forme d'unités complètes ou d'importants éléments préfabriqués, qui sont spécialement conçues ou préparées pour contenir le cœur d'un réacteur nucléaire au sens donné à cette expression sous 1.1 ci-dessus, et qui sont capables de résister à la pression de travail du fluide de refroidissement primaire.

Note explicative

La plaque de couverture d'une cuve de pression de réacteur tombe sous 1.2 en tant qu'élément préfabriqué important d'une telle cuve. Les internes d'un réacteur (tels que colonnes et plaques de support du cœur et autres internes de la cuve, tubes guides pour barres de commande, écrans thermiques, déflecteurs, plaques à grille du cœur, plaques de diffuseur, etc.) sont normalement livrés par le fournisseur du réacteur. Parfois, certains internes de supportage sont inclus dans la fabrication de la cuve de pression. Ces articles sont d'une importance suffisamment cruciale pour la sûreté et la fiabilité du fonctionnement d'un réacteur (et, partant, du point de vue des garanties données et de la responsabilité assumée par le fournisseur du réacteur) pour que leur fourniture en marge de l'accord fondamental de fourniture du réacteur lui-même ne soit pas de pratique courante. C'est pourquoi, bien que la fourniture

séparée de ces articles uniques, spécialement conçus et préparés, d'une importance cruciale, de grandes dimensions et d'un prix élevé ne soit pas nécessairement considérée comme exclue du domaine en question, ce mode de fourniture est jugé peu probable.

1.3. Machines pour le chargement et le déchargement du combustible nucléaire

Matériel de manutention spécialement conçu ou préparé pour introduire ou extraire le combustible d'un réacteur nucléaire au sens donné à cette expression sous 1.1 ci-dessus, et qui peut être utilisé en marche ou est doté de dispositifs techniques perfectionnés de positionnement ou d'alignement pour permettre des opérations complexes de chargement à l'arrêt, telles que celles au cours desquelles il est normalement impossible d'observer le combustible directement ou d'y accéder.

1.4. Barres de commande pour réacteurs

Barres spécialement conçues ou préparées pour le réglage de la vitesse de réaction dans un réacteur nucléaire au sens donné à cette expression sous 1.1 ci-dessus.

Note explicative

 $Cet \it article \it comprend, outre \it l'absorbeur \it de \it neutrons, les \it structures$ de support ou de suspension de l'absorbeur, si elles sont fournies séparément.

1.5. Tubes de force pour réacteurs

Tubes spécialement conçus ou préparés pour contenir les éléments combustibles et le fluide de refroidissement primaire d'un réacteur nucléaire au sens donné à cette expression sous 1.1 ci-dessus, à des pressions de travail supérieures à 5,1 MPa (740 psi).

1.6. Tubes de zirconium

Zirconium métallique et alliages à base de zirconium, sous forme de tubes ou d'assemblages de tubes, fournis en quantités supérieures à 500 kg pendant une période de douze mois, spécialement conçus ou préparés pour être utilisés dans un réacteur nucléaire au sens donné à cette expression sous 1.1 ci-dessus, et dans lesquels le rapport hafnium/zirconium est inférieur à 1/500 parties en poids.

1.7. Pompes du circuit primaire

Pompes spécialement conçues ou préparées pour faire circuler le fluide de refroidissement primaire pour réacteurs nucléaires au sens donné à cette expression sous 1.1 ci-dessus.

Note explicative

Les pompes spécialement conçues ou préparées peuvent compren-

dre des systèmes complexes à dispositifs d'étanchéité simples ou multiples, destinés à éviter les fuites du fluide de refroidissement primaire, des pompes à rotor étanche et des pompes dotées de systèmes à masse d'inertie. Cette définition englobe les pompes conformes à la norme NC-1 ou à des normes équivalentes.

2. MATIÈRES NON NUCLÉAIRES POUR RÉACTEURS

2.1. Deutérium et eau lourde

Deutérium, eau lourde (oxyde de deutérium) et tout composé de deutérium dans lequel le rapport atomique deutérium/hydrogène dépasse 1/5 000, destinés à être utilisés dans un réacteur nucléaire, au sens donné à cette expression sous 1.1 ci-dessus, et fournis en quantités dépassant 200 kg d'atomes de deutérium pendant une période de douze mois, quel que soit le pays destinataire.

2.2. Graphite de pureté nucléaire

Graphite d'une pureté supérieure à cinq parties par million d'équivalent en bore et d'une densité de plus de 1,50 g/cm³, qui est destiné à être utilisé dans un réacteur nucléaire tel que défini au paragraphe 1.1 ci-dessus et qui est fourni en quantités dépassant 3 × 10⁴ kg (30 tonnes métriques) pendant une période de douze mois, quel que soit le pays destinataire.

Note

Aux fins de la déclaration, le gouvernement déterminera si les exportations de graphite répondant aux spécifications ci-dessus sont destinées ou non à être utilisées dans un réacteur nucléaire.

3. USINES DE RETRAITEMENT D'ÉLÉMENTS COMBUSTIBLES IRRADIES ET MATÉRIEL SPÉCIALEMENT CONÇU OU PRÉPARÉ À CETTE FIN

Note d'introduction

Le retraitement du combustible nucléaire irradié sépare le plutonium et l'uranium des produits de fission et d'autres éléments transuraniens de haute activité. Différents procédés techniques peuvent réaliser cette séparation. Mais, avec les années, le procédé Purex est devenu le plus couramment utilisé et accepté. Il comporte la dissolution du combustible nucléaire irradié dans l'acide nitrique, suivie d'une séparation de l'uranium, du plutonium et des produits de fission, que l'on extrait par solvant en utilisant le phosphate tributylique mélangé à un diluant organique.

D'une usine Purex à l'autre, les opérations du processus sont similaires : dégainage des éléments combustibles irradiés, dissolution du combustible, extraction par solvant et stockage des solutions obtenues. Il peut y avoir aussi des équipements pour la dénitration thermique du nitrate d'uranium, la conversion du nitrate de plutonium en oxyde ou en métal, et le traitement des solutions de produits de fission qu'il s'agit de convertir en une forme se prêtant au stockage de longue durée ou au stockage définitif. Toutefois, la configuration et le type particuliers des équipements qui accomplissent ces opérations peuvent différer selon les installations Purex pour diverses raisons, notamment selon le type et la quantité de combustible nucléaire irradié à retraiter et l'usage prévu des matières récupérées, et selon les principes de sûreté et d'entretien qui ont été retenus dans la conception de l'installation.

L'expression « usine de retraitement d'éléments combustibles irradiés » englobe les matériel et composants qui entrent normalement en contact direct avec le combustible irradié ou servent à contrôler directement ce combustible et les principaux flux de matières nucléaires et de produits de fission pendant le traitement.

Ces procédés, y compris les systèmes complets pour la conversion du plutonium et la production de plutonium métal, peuvent être identifiés par les mesures prises pour éviter la criticité (par exemple par la géométrie), les radioexpositions (par exemple par blindage) et les risques de toxicité (par exemple par confinement).

Articles considérés comme tombant dans la catégorie visée par le membre de phrase « et matériel spécialement conçu ou préparé » pour le retraitement d'éléments combustibles irradiés:

3.1. Machines à dégainer les éléments combustibles irradiés

Note d'introduction

Ces machines dégainent le combustible afin d'exposer la matière nucléaire irradiée à la dissolution. Des cisailles à métaux spécialement conçues sont le plus couramment employées, mais du matériel de pointe, tel que lasers, peut être utilisé.

Machines télécommandées spécialement conçues ou préparées pour être utilisées dans une usine de retraitement au sens donné à ce terme ci-dessus et destinées à désassembler, découper ou cisailler des assemblages, faisceaux ou barres de combustible nucléaire irradiés.

3.2. Dissolveurs

Note d'introduction

Les dissolveurs reçoivent normalement les tronçons de combustible irradié. Dans ces récipients, dont la sûreté-criticité est assurée, la matière nucléaire irradiée est dissoute dans l'acide nitrique; restent les coques, qui sont retirées du flux de traitement. Récipients « géométriquement sûrs » (de petit diamètre, annulaires ou plats), spécialement conçus ou préparés en vue d'être utilisés dans une usine de retraitement, au sens donné à ce terme ci-dessus, pour dissoudre du combustible nucléaire irradié, capables de résister à des liquides fortement corrosifs chauds et dont le chargement et l'entretien peuvent être télécommandés.

3.3. Extracteurs et matériel d'extraction par solvant

Note d'introduction

Les extracteurs reçoivent à la fois la solution de combustible irradié provenant des dissolveurs et la solution organique qui sépare l'uranium, le plutonium et les produits de fission. Le matériel d'extraction par solvant est normalement conçu pour satisfaire à des paramètres de fonctionnement rigoureux, tels que longue durée de vie utile sans exigences d'entretien ou avec facilité de remplacement, simplicité de commande et de contrôle, et adaptabilité aux variations des conditions du procédé.

Extracteurs, tels que colonnes pulsées ou garnies, mélangeursdécanteurs et extracteurs centrifuges, spécialement conçus ou préparés pour être utilisés dans une usine de retraitement de combustible irradié. Les extracteurs doivent pouvoir résister à l'action corrosive de l'acide nitrique. Les extracteurs sont normalement fabriqués, selon des exigences très strictes (notamment techniques spéciales de soudage, d'inspection et d'assurance, et contrôle de la qualité), en acier inoxydable à bas carbone, titane, zirconium ou autres matériaux à haute résistance.

3.4. Récipients de collecte ou de stockage des solutions

Note d'introduction

Une fois franchie l'étape de l'extraction par solvant, on obtient trois flux principaux. Dans la suite du traitement, des récipients de collecte ou de stockage sont utilisés comme suit :

- a. la solution de nitrate d'uranium est concentrée par évaporation et le nitrate est converti en oxyde. Cet oxyde est réutilisé dans le cycle du combustible nucléaire ;
- b. la solution de produits de fission de très haute activité est normalement concentrée par évaporation et stockée sous forme de concentrat liquide. Ce concentrat peut ensuite être évaporé et converti en une forme se prêtant au stockage temporaire ou définitif;
- c. la solution de nitrate de plutonium est concentrée et stockée avant de passer aux stades ultérieurs du traitement. En particulier, les récipients de collecte ou de stockage des solutions de plutonium sont conçus pour éviter tout risque de criticité résultant des variations de concentration et de forme du flux en question.

Récipients de collecte ou de stockage spécialement conçus ou préparés pour être utilisés dans une usine de retraitement de combustible irradié. Les récipients de collecte ou de stockage doivent pouvoir résister à l'action corrosive de l'acide nitrique. Les récipients de collecte ou de stockage sont normalement fabriqués à l'aide de matériaux tels qu'acier inoxydable à bas carbone, titane ou zirconium ou autres matériaux à haute résistance. Les récipients de collecte ou de stockage peuvent être conçus pour

la conduite et l'entretien télécommandés et peuvent avoir, pour prévenir le risque de criticité, les caractéristiques suivantes :

1) parois ou structures internes avec un équivalent en bore d'au moins deux pour cent;

2) un diamètre maximum de 175 mm (7 pouces) pour les récipients cylindriques;

3) une largeur maximum de 75 mm (3 pouces) pour les récipients plats ou annulaires.

3.5. Système de conversion du nitrate de plutonium en oxyde

Note d'introduction

Dans la plupart des usines de retraitement, le traitement final consiste en la conversion de la solution de nitrate de plutonium en dioxyde de plutonium. Les principales activités que comporte cette conversion sont : stockage et ajustage de la solution, précipitation et séparation solide/liquide, calcination, manutention du produit, ventilation, gestion des déchets et contrôle du procédé.

Systèmes complets spécialement conçus ou préparés pour la conversion du nitrate de plutonium en oxyde, qui sont en particulier adaptés de manière à éviter tout risque de criticité et d'irradiation et à réduire le plus possible les risques de toxicité.

3.6. Système de conversion de l'oxyde de plutonium en métal

Note d'introduction

Ce traitement, qui pourrait être associé à une installation de retraitement, comporte la fluoration du dioxyde de plutonium, normalement par l'acide fluorhydrique très corrosif, pour obtenir du fluorure de plutonium, qui est ensuite réduit au moyen de calcium métal de grande pureté pour produire du plutonium métal et un laitier de fluorure de calcium.

Les principales activités que comporte cette conversion sont : fluoration (avec par exemple un matériel fait ou revêtu de métal précieux), réduction (par exemple dans des creusets en céramique), récupération du laitier, manutention du produit, ventilation, gestion des déchets et contrôle du procédé.

Systèmes complets spécialement conçus ou préparés pour la production de plutonium métal, qui sont en particulier adaptés de manière à éviter tout risque de criticité et d'irradiation, et à réduire le plus possible les risques de toxicité.

4. USINES DE FABRICATION D'ÉLÉMENTS COMBUSTIBLES

Une « usine de fabrication d'éléments combustibles » est équipée du matériel :

- a. qui entre normalement en contact direct avec le flux de matières nucléaires, le traite directement ou commande le processus de production;
- b. qui assure le gainage des matières nucléaires.

5. USINES DE SÉPARATION DES ISOTOPES DE L'URANIUM ET MATÉRIEL, AUTRE QUE LES APPAREILS D'ANALYSE, SPÉCIALEMENT CONÇU OU PRÉPARÉ À CETTE FIN

Articles considérés comme tombant dans la catégorie visée par le membre de phrase « et matériel, autre que les appareils d'analyse, spécialement conçu ou préparé » pour la séparation des isotopes de l'uranium:

5.1. Centrifugeuses et assemblages et composants spécialement conçus ou préparés pour utilisation dans les centrifugeuses

Note d'introduction

Ordinairement, la centrifugeuse se compose d'un ou de plusieurs cylindres à paroi mince, d'un diamètre compris entre 75 mm (3 pouces) et 400 mm (16 pouces), placés dans une enceinte à vide et tournant à grande vitesse périphérique de l'ordre de 300 m/s ou plus autour d'un axe vertical. Pour atteindre une grande vitesse, les matériaux constitutifs des composants tournants doivent avoir un rapport résistance-densité élevé et l'assemblage rotor, et donc ses composants, doivent être usinés avec des tolérances très serrées pour minimiser les écarts par rapport à l'axe. À la différence d'autres centrifugeuses, la centrifugeuse utilisée pour l'enrichissement de l'uranium se caractérise par la présence dans le bol d'une ou de plusieurs chicanes tournantes en forme de disque, d'un ensemble de tubes fixe servant à introduire et à prélever l'UF, gazeux, et d'au moins trois canaux séparés, dont deux sont connectés à des écopes s'étendant de l'axe à la périphérie du bol.

On trouve aussi dans l'enceinte à vide plusieurs articles critiques qui ne tournent pas et qui, bien qu'ils soient conçus spécialement, ne sont pas difficiles à fabriquer et ne sont pas non plus composés de matériaux spéciaux. Toutefois, une installation d'ultracentrifugation nécessite un grand nombre de ces composants, de sorte que la quantité peut être une indication importante de l'utilisation finale.

5.1.1. Composants tournants

a. Assemblages rotors complets

Cylindres à paroi mince, ou ensembles de cylindres à paroi mince réunis, fabriqués dans un ou plusieurs des matériaux à rapport résistance-densité élevé décrits dans la note explicative ; lorsqu'ils sont réunis, les cylindres sont joints les uns aux autres par les soufflets ou anneaux flexibles décrits sous 5.1.1 c) ci-après. Le bol est équipé d'une ou de plusieurs chicanes internes et de bouchons d'extrémité, comme indiqué sous 5.1.1 d) et e) ci-après, s'il est prêt à l'emploi. Toutefois, l'assemblage complet peut être livré partiellement monté seulement.

b. Bols

Cylindres à paroi mince d'une épaisseur de 12 mm (0,5 pouce) ou moins, spécialement conçus ou préparés, ayant un diamètre compris entre 75 mm (3 pouces) et 400 mm (16 pouces), et fabriqués dans un ou plusieurs des matériaux à rapport résistancedensité élevé décrits dans la note explicative.

c. Anneaux ou soufflets

Composants spécialement conçus ou préparés pour fournir un support local au bol ou pour joindre ensemble plusieurs cylindres constituant le bol. Le soufflet est un cylindre court ayant une paroi de 3 mm (0,12 pouce) ou moins d'épaisseur, un diamètre compris entre 75 mm (3 pouces) et 400 mm (16 pouces) et une spire, et fabriqué dans l'un des matériaux ayant un rapport résistance-densité élevé décrit dans la note explicative.

d. Chicanes

Composants en forme de disque d'un diamètre compris entre 75 mm (3 pouces) et 400 mm (16 pouces), spécialement conçus ou préparés pour être montés à l'intérieur du bol de la centrifugeuse afin d'isoler la chambre de prélèvement de la chambre de séparation principale et, dans certains cas, de faciliter la circulation de l'UF gazeux à l'intérieur de la chambre de séparation principale du bol, et fabriqués dans l'un des matériaux ayant un rapport résistance-densité élevé décrit dans la note explicative.

e. Bouchons d'extrémité supérieurs et inférieurs

Composants en forme de disque d'un diamètre compris entre 75 mm (3 pouces) et 400 mm (16 pouces), spécialement conçus ou préparés pour s'adapter aux extrémités du bol et maintenir ainsi l'UF à l'intérieur de celui-ci et, dans certains cas, pour porter, retenir ou contenir en tant que partie intégrante un élément du palier supérieur (bouchon supérieur), ou pour porter les éléments tournants du moteur et du palier inférieur (bouchon inférieur), et fabriqués dans l'un des matériaux ayant un rapport résistancedensité élevé décrit dans la note explicative.

Note explicative

Les matériaux utilisés pour les composants tournants des centrifugeuses sont:

- a. les aciers martensitiques vieillissables ayant une charge limite de rupture égale ou supérieure à 2,05·10⁹ N/m² (300 000 psi) ou plus;
- b. les alliages d'aluminium ayant une charge limite de rupture égale ou supérieure à 0,46•10° N/m² (67 000 psi) ou plus ;
- c. des matériaux filamenteux pouvant être utilisés dans des structures composites et ayant un module spécifique égal ou supérieur à 12,3•106 m, et une charge limite de rupture spécifique égale ou supérieure à 0,3•106 m (le « module spécifique » est le mo-

dule de Young exprimé en N/m² divisé par le poids volumique exprimé en N/m³; la « charge limite de rupture spécifique » est la charge limite de rupture exprimée en N/m² divisée par le poids volumique exprimé en N/m³).

5.1.2. Composants fixes

a. Paliers de suspension magnétique

Assemblages de support spécialement conçus ou préparés, comprenant un aimant annulaire suspendu dans un carter contenant un milieu amortisseur. Le carter est fabriqué dans un matériau résistant à l'UF (voir la note explicative de la section 5.2). L'aimant est couplé à une pièce polaire ou à un deuxième aimant fixé sur le bouchon d'extrémité supérieur décrit sous 5.1.1 e). L'aimant annulaire peut avoir un rapport entre le diamètre extérieur et le diamètre intérieur inférieur ou égal à 1,6:1. L'aimant peut avoir une perméabilité initiale égale ou supérieure à 0,15 H/m (120 000 en unités CGS), ou une rémanence égale ou supérieure à 98,5 %, ou une densité d'énergie électromagnétique supérieure à 80 kJ/m³ (107 gauss-œrsteds). Outre les propriétés habituelles du matériau, une condition essentielle est que la déviation des axes magnétiques par rapport aux axes géométriques soit limitée par des tolérances très serrées (inférieures à 0,1 mm ou 0,004 pouce) ou que l'homogénéité du matériau de l'aimant soit spécialement imposée.

b. Paliers de butée/amortisseurs

Paliers spécialement conçus ou préparés, comprenant un assemblage pivot/coupelle monté sur un amortisseur. Le pivot se compose habituellement d'un arbre en acier trempé comportant un hémisphère à une extrémité et un dispositif de fixation au bouchon inférieur décrit sous 5.1.1 e) à l'autre extrémité. Toutefois, l'arbre peut être équipé d'un palier hydrodynamique. La coupelle a la forme d'une pastille avec indentation hémisphérique sur une surface. Ces composants sont souvent fournis indépendamment de l'amortisseur.

c. Pompes moléculaires

Cylindres spécialement conçus ou préparés, qui comportent sur leur face interne des rayures hélicoïdales obtenues par usinage ou extrusion, et dont les orifices sont alésés. Leurs dimensions habituelles sont les suivantes : diamètre interne compris entre 75 mm (3 pouces) et 400 mm (16 pouces), épaisseur de paroi égale ou supérieure à 10 mm, et longueur égale ou supérieure au diamètre. Habituellement, les rayures ont une section rectangulaire et une profondeur égale ou supérieure à 2 mm (0,08 pouce).

d. Stators de moteur

Stators annulaires spécialement conçus ou préparés pour des moteurs grande vitesse à hystérésis (ou à réluctance), alimentés en courant alternatif multiphasé pour fonctionnement synchrone dans le vide avec une gamme de fréquence de 600 à 2 000 Hz, et une gamme de puissance de 50 à 1 000 VA. Les stators sont constitués par des enroulements multiphasés sur des noyaux de

fer doux feuilletés, constitués de couches minces dont l'épaisseur est habituellement inférieure ou égale à 2 mm (0,08 pouce).

e. Enceintes de centrifugeuse

Composants spécialement conçus ou préparés pour contenir l'assemblage rotor d'une centrifugeuse. L'enceinte est constituée d'un cylindre rigide possédant une paroi d'au plus 30 mm (1,2 pouce) d'épaisseur, ayant subi un usinage de précision aux extrémités en vue de recevoir les paliers, et qui est muni d'une ou plusieurs brides pour le montage. Les extrémités usinées sont parallèles entre elles et perpendiculaires à l'axe longitudinal du cylindre avec une déviation au plus égale à 0,05 degré. L'enceinte peut également être formée d'une structure de type alvéolaire permettant de loger plusieurs bols. Les enceintes sont constituées ou revêtues de matériaux résistant à la corrosion par l'UF₆.

f. Ecopes

Tubes ayant un diamètre interne d'au plus 12 mm (0,5 pouce), spécialement conçus ou préparés pour extraire l'UF, gazeux contenu dans le bol selon le principe du tube de Pitot (c'est-àdire que leur ouverture débouche dans le flux gazeux périphérique à l'intérieur du bol, configuration obtenue par exemple en courbant l'extrémité d'un tube disposé selon le rayon) et pouvant être raccordés au système central de prélèvement du gaz. Les tubes sont constitués ou revêtus de matériaux résistant à la corrosion par l'UF₆.

5.2. Systèmes, matériel et composants auxiliaires spécialement conçus ou préparés pour utilisation dans les usines d'enrichissement par ultracentrifugation

Note d'introduction

Les systèmes, matériel et composants auxiliaires d'une usine d'enrichissement par ultracentrifugation sont les systèmes nécessaires pour introduire l'UF, dans les centrifugeuses, pour relier les centrifugeuses les unes aux autres en cascades pour obtenir des taux d'enrichissement de plus en plus élevés et pour prélever l'UF, dans les centrifugeuses en tant que « produit » et « résidus », ainsi que le matériel d'entraînement des centrifugeuses et de commande de l'usine.

Habituellement, l'UF est sublimé au moyen d'autoclaves chauffés et réparti à l'état gazeux dans les diverses centrifugeuses grâce à un collecteur tubulaire de cascade. Les flux de « produit » et de « résidus » sortant des centrifugeuses sont aussi acheminés par un collecteur tubulaire de cascade vers des pièges à froid (fonctionnant à environ 203 K (- 70 °C), où l'UF, est condensé avant d'être transféré dans des conteneurs de transport ou de stockage. Étant donné qu'une usine d'enrichissement contient plusieurs milliers de centrifugeuses montées en cascade, il y a plusieurs kilomètres de tuyauteries comportant des milliers de soudures, ce qui suppose une répétitivité considérable du montage. Les matériel, composants et tuyauteries sont fabriqués suivant des normes très rigoureuses de vide et de propreté.

5.2.1. Systèmes d'alimentation/systèmes de prélèvement du produit et des résidus

Systèmes spécialement conçus ou préparés, comprenant :

- des autoclaves (ou stations) d'alimentation, utilisés pour introduire l'UF₆ dans les cascades de centrifugeuses à une pression allant jusqu'à 100 kPa (15 psi) et à un débit égal ou supérieur à 1 kg/h;
- des pièges à froid utilisés pour prélever l'UF, des cascades à une pression allant jusqu'à 3 kPa (0,5 psi). Les pièges à froid peuvent être refroidis jusqu'à 203 K (- 70 °C) et chauffés jusqu'à 343 K (70 °C);
- des stations « Produit » et « Résidus » pour le transfert de l'UF₆ dans des conteneurs.

Ce matériel et ces tuyauteries sont constitués entièrement ou revêtus intérieurement de matériaux résistant à l'UF (voir la note explicative de la présente section) et sont fabriqués suivant des normes très rigoureuses de vide et de propreté.

5.2.2. Collecteurs/tuyauteries

Tuyauteries et collecteurs spécialement conçus ou préparés pour la manipulation de l'UF, à l'intérieur des cascades de centrifugeuses. La tuyauterie est habituellement du type collecteur « triple », chaque centrifugeuse étant connectée à chacun des collecteurs. La répétitivité du montage du système est donc grande. Le système est constitué entièrement de matériaux résistant à l'UF, (voir la note explicative de la présente section) et est fabriqué suivant des normes très rigoureuses de vide et de propreté.

5.2.3. Spectromètres de masse pour UF_s/sources d'ions

Spectromètres de masse magnétiques ou quadripolaires spécialement conçus ou préparés, capables de prélever en direct sur les flux d'UF, gazeux des échantillons du gaz d'entrée, du produit ou des résidus, et ayant toutes les caractéristiques suivantes :

- 1) pouvoir de résolution unitaire pour l'unité de masse atomique supérieur à 320;
- 2) sources d'ions constituées ou revêtues de nichrome ou de monel ou nickelées;
- 3) sources d'ionisation par bombardement électronique ;
- 4) présence d'un collecteur adapté à l'analyse isotopique.

5.2.4. Convertisseurs de fréquence

Convertisseurs de fréquence spécialement conçus ou préparés pour l'alimentation des stators de moteurs décrits sous 5.1.2 d), ou parties, composants et sous-assemblages de convertisseurs de fréquence, ayant toutes les caractéristiques suivantes :

- 1) sortie multiphasée de 600 à 2 000 Hz;
- 2) stabilité élevée (avec un contrôle de la fréquence supérieur à 0,1 %);
- 3) faible distorsion harmonique (inférieure à 2 %);
- 4) rendement supérieur à 80 %.

Note explicative

Les articles énumérés ci-dessus, soit sont en contact direct avec l'UF₆ gazeux, soit contrôlent directement les centrifugeuses et le passage du gaz d'une centrifugeuse à l'autre et d'une cascade à l'autre. Les matériaux résistant à la corrosion par l'UF₆ comprennent l'acier inoxydable, l'aluminium, les alliages d'aluminium, le nickel et les alliages contenant 60 % ou plus de nickel.

5.3. Assemblages et composants spécialement conçus ou préparés pour utilisation dans l'enrichissement par diffusion gazeuse

Note d'introduction

Dans la méthode de séparation des isotopes de l'uranium par diffusion gazeuse, le principal assemblage du procédé est constitué par une barrière poreuse spéciale de diffusion gazeuse, un échangeur de chaleur pour refroidir le gaz (qui est échauffé par la compression), des vannes d'étanchéité et des vannes de réglage, ainsi que des tuyauteries. Étant donné que le procédé de la diffusion gazeuse fait appel à l'hexafluorure d'uranium (UF,), toutes les surfaces des équipements, tuyauteries et instruments (qui sont en contact avec le gaz) doivent être constituées de matériaux qui restent stables en présence d'UF s. Une installation de diffusion gazeuse nécessite un grand nombre d'assemblages de ce type, de sorte que la quantité peut être une indication importante de l'utilisation finale.

5.3.1. Barrières de diffusion gazeuse

- a. Filtres minces et poreux spécialement conçus ou préparés, qui ont des pores d'un diamètre de 100 à 1 000 A (angströms), une épaisseur égale ou inférieure à 5 mm (0,2 pouce) et, dans le cas des formes tubulaires, un diamètre égal ou inférieur à 25 mm (1 pouce), et sont constitués de matériaux métalliques, polymères ou céramiques résistant à la corrosion par l'UF_s.
- b. Composés ou poudres préparés spécialement pour la fabrication de ces filtres. Ces composés et poudres comprennent le nickel et des alliages contenant 60 % ou plus de nickel, l'oxyde d'aluminium et les polymères d'hydrocarbures totalement fluorés ayant une pureté égale ou supérieure à 99,9 %, une taille des grains inférieure à 10 microns et une grande uniformité de cette taille, qui sont spécialement préparés pour la fabrication de barrières de diffusion gazeuse.

5.3.2. Diffuseurs

Enceintes spécialement conçues ou préparées, hermétiquement scellées, de forme cylindrique et ayant plus de 300 mm (12 pouces) de diamètre et plus de 900 mm (35 pouces) de long, ou de forme rectangulaire avec des dimensions comparables, qui sont dotées d'un raccord d'entrée et de deux raccords de sortie ayant tous plus de 50 mm (2 pouces) de diamètre, prévues pour contenir la barrière de diffusion gazeuse, constituées ou revêtues intérieurement de matériaux résistant à l'UF, et conçues pour être installées horizontalement ou verticalement.

5.3.3. Compresseurs et soufflantes à gaz

Compresseurs axiaux, centrifuges ou volumétriques et soufflantes à gaz spécialement conçus ou préparés, ayant une capacité d'aspiration de 1 m³/min ou plus d'UF₆ et une pression de sortie pouvant aller jusqu'à plusieurs centaines de kPa (100 psi), conçus pour fonctionner longtemps en atmosphère d'UF₆, avec ou sans moteur électrique de puissance appropriée, et assemblages séparés de compresseurs et soufflantes à gaz de ce type. Ces compresseurs et soufflantes à gaz ont un rapport de compression compris entre 2/1 et 6/1, et sont constitués ou revêtus intérieurement de matériaux résistant à l'UF_s.

5.3.4. Garnitures d'étanchéité d'arbres

Garnitures à vide spécialement conçues ou préparées, avec connexions d'alimentation et d'échappement, pour assurer de manière fiable l'étanchéité de l'arbre reliant le rotor du compresseur ou de la soufflante à gaz au moteur d'entraînement, en empêchant l'air de pénétrer dans la chambre intérieure du compresseur ou de la soufflante à gaz qui est remplie d'UF₆. Ces garnitures sont normalement conçues pour un taux de pénétration de gaz tampon inférieur à 1 000 cm³/min (60 pouces cubes/min).

5.3.5. Échangeurs de chaleur pour le refroidissement de l'UF

Échangeurs de chaleur spécialement conçus ou préparés, constitués ou revêtus intérieurement de matériaux résistant à l'UF, (à l'exception de l'acier inoxydable) ou de cuivre ou d'une combinaison de ces métaux, et prévus pour un taux de variation de la pression due à une fuite qui est inférieur à 10 Pa (0,0015 psi) par heure pour une différence de pression de 100 kPa (15 psi).

5.4. Systèmes, matériel et composants auxiliaires spécialement conçus ou préparés pour utilisation dans l'enrichissement par diffusion gazeuse

Note d'introduction

Les systèmes, le matériel et les composants auxiliaires des usines d'enrichissement par diffusion gazeuse sont les systèmes nécessaires pour introduire l'UF, dans l'assemblage de diffusion gazeuse, pour relier les assemblages les uns aux autres en cascades (ou étages) afin d'obtenir des taux d'enrichissement de plus en plus élevés, et pour prélever l'UF, dans les cascades de diffusion en tant que « produit » et « résidus ».

En raison des fortes propriétés d'inertie des cascades de diffusion, toute interruption de leur fonctionnement, et en particulier leur mise à l'arrêt, a de sérieuses conséquences. Le maintien d'un vide rigoureux et constant dans tous les systèmes du procédé, la protection automatique contre les accidents et le réglage automatique précis du flux de gaz revêtent donc une grande importance dans une usine de diffusion gazeuse. Tout cela oblige à équiper l'usine d'un grand nombre de systèmes spéciaux de commande, de régulation et de mesure.

Habituellement, l'UF₆ est sublimé à partir de cylindres placés dans des autoclaves et envoyé à l'état gazeux au point d'entrée grâce à un collecteur tubulaire de cascade. Les flux de « produit » et de « résidus » issus des points de sortie sont acheminés par un collecteur tubulaire de cascade vers les pièges à froid ou les stations de compression, où l'UF₆ gazeux est liquéfié avant d'être transféré dans des conteneurs de transport ou de stockage appropriés. Étant donné qu'une usine d'enrichissement par diffusion gazeuse contient un grand nombre d'assemblages de diffusion gazeuse disposés en cascades, il y a plusieurs kilomètres de tuyauteries comportant des milliers de soudures, ce qui suppose une répétitivité considérable du montage. Le matériel, composants et tuyauteries sont fabriqués suivant des normes très rigoureuses de vide et de propreté.

5.4.1. Systèmes d'alimentation/systèmes de prélèvement du produit et des résidus

Systèmes spécialement conçus ou préparés, capables de fonctionner à des pressions égales ou inférieures à 300 kPa (45 psi) et comprenant :

- des autoclaves (ou systèmes) d'alimentation utilisés pour introduire l'UF₆ dans les cascades de diffusion gazeuse ;
- \bullet des pièges à froid utilisés pour prélever l'UF $_{\! 6}$ des cascades de diffusion;
- des stations de liquéfaction où l'UF, gazeux provenant de la cascade est comprimé et refroidi pour obtenir de l'UF₆ liquide ;
- des stations « Produit » ou « Résidus » pour le transfert de l'UF₆ dans des conteneurs.

5.4.2. Collecteurs/tuyauteries

Tuyauteries et collecteurs spécialement conçus ou préparés pour la manipulation de l'UF₆ à l'intérieur des cascades de diffusion gazeuse. La tuyauterie est normalement du type collecteur « double », chaque cellule étant connectée à chacun des collecteurs.

5.4.3. Systèmes à vide

- a. Grands distributeurs à vide, collecteurs à vide et pompes à vide ayant une capacité d'aspiration égale ou supérieure à 5 m³/min (175 pieds cubes/min), spécialement conçus ou préparés.
- b. Pompes à vide spécialement conçues pour fonctionner en atmosphère d'UF₆, constituées ou revêtues intérieurement d'aluminium, de nickel ou d'alliages comportant plus de 60 % de nickel. Ces pompes peuvent être rotatives ou volumétriques, être à déplacement et dotées de joints en fluorocarbures et être pourvues de fluides de service spéciaux.

5.4.4. Vannes spéciales d'arrêt et de réglage

Soufflets d'arrêt et de réglage, manuels ou automatiques, spécialement conçus ou préparés, constitués de matériaux résistant à l'UF₆ et ayant un diamètre compris entre 40 et 1 500 mm (1,5 à 59 pouces), pour installation dans des systèmes principaux et auxiliaires des usines d'enrichissement par diffusion gazeuse.

5.4.5. Spectromètres de masse pour UF_s/sources d'ions

Spectromètres de masse magnétiques ou quadripolaires spécialement conçus ou préparés, capables de prélever en direct sur les flux d'UF, gazeux des échantillons du gaz d'entrée, du produit ou des résidus, et ayant toutes les caractéristiques suivantes :

- 1) pouvoir de résolution unitaire pour l'unité de masse atomique supérieur à 320;
- 2) sources d'ions constituées ou revêtues de nichrome ou de monel ou nickelées;
- 3) sources d'ionisation par bombardement électronique ;
- 4) collecteur adapté à l'analyse isotopique.

Note explicative

Les articles énumérés ci-dessus, soit sont en contact direct avec l'UF, gazeux, soit contrôlent directement le flux de gaz dans la cascade. Toutes les surfaces qui sont en contact avec le gaz de procédé sont constituées entièrement ou revêtues de matériaux résistant à l'UF_c. Aux fins des sections relatives aux articles pour diffusion gazeuse, les matériaux résistant à la corrosion par l'UF, comprennent l'acier inoxydable, l'aluminium, les alliages d'aluminium, l'oxyde d'aluminium, le nickel et les alliages contenant 60 % ou plus de nickel, et les polymères d'hydrocarbures totalement fluorés résistant à l'UF .

5.5. Systèmes, matériel et composants spécialement conçus ou préparés pour utilisation dans les usines d'enrichissement par procédé aérodynamique

Note d'introduction

Dans les procédés d'enrichissement aérodynamiques, un mélange d'UF₆ gazeux et d'un gaz léger (hydrogène ou hélium) est comprimé, puis envoyé au travers d'éléments séparateurs dans lesquels la séparation isotopique se fait grâce à la production de forces centrifuges importantes le long d'une paroi courbe. Deux procédés de ce type ont été mis au point avec de bons résultats : le procédé à tuyères et le procédé vortex. Dans les deux cas, les principaux composants d'un étage de séparation comprennent des enceintes cylindriques qui renferment les éléments de séparation spéciaux (tuyères ou tubes vortex), des compresseurs et des échangeurs de chaleur destinés à évacuer la chaleur de compression.

Une usine d'enrichissement par procédé aérodynamique nécessite un grand nombre de ces étages, de sorte que la quantité peut être une indication importante de l'utilisation finale. Étant donné que les procédés aérodynamiques font appel à l'UF₆, toutes les surfaces des équipements, tuyauteries et instruments (qui sont en contact avec le gaz) doivent être constituées de matériaux qui restent stables au contact de l'UF₆.

Note explicative

Les articles énumérés dans la présente section soit sont en contact direct avec l'UF₆ gazeux, soit contrôlent directement le flux de gaz dans la cascade. Toutes les surfaces qui sont en contact avec le gaz de procédé sont constituées entièrement ou revêtues de matériaux résistant à l'UF₆. Aux fins de la section relative aux articles pour enrichissement par procédé aérodynamique, les matériaux résistant à la corrosion par l'UF comprennent le cuivre, l'acier inoxydable, l'aluminium, les alliages d'aluminium, le nickel et les alliages contenant 60 % ou plus de nickel, et les polymères d'hydrocarbures totalement fluorés résistant à l'UF .

5.5.1. Tuyères de séparation

Tuyères de séparation et assemblages de tuyères de séparation spécialement conçus ou préparés. Les tuyères de séparation sont constituées de canaux incurvés à section à fente, de rayon de courbure inférieur à 1 mm (habituellement compris entre 0,1 et 0,05 mm), résistant à la corrosion par l'UF₆, à l'intérieur desquels un écorceur sépare en deux fractions le gaz circulant dans la tuyère.

5.5.2. Tubes vortex

Tubes vortex et assemblages de tubes vortex, spécialement conçus ou préparés. Les tubes vortex, de forme cylindrique ou conique, sont constitués ou revêtus de matériaux résistant à la corrosion par l'UF₆, ont un diamètre compris entre 0,5 cm et 4 cm et un rapport longueur/diamètre inférieur ou égal à 20:1, et sont munis d'un ou plusieurs canaux d'admission tangentiels. Les tubes peuvent être équipés de dispositifs de type tuyère à l'une de leurs extrémités ou à leurs deux extrémités.

Note explicative

Le gaz pénètre tangentiellement dans le tube vortex à l'une de ses extrémités, ou par l'intermédiaire de cyclones, ou encore tangentiellement par de nombreux orifices situés le long de la périphérie du tube.

5.5.3. Compresseurs et soufflantes à gaz

Compresseurs axiaux, centrifuges ou volumétriques ou soufflantes à gaz spécialement conçus ou préparés, constitués ou revêtus de matériaux résistant à la corrosion par l'UF, et ayant une capacité d'aspiration du mélange d'UF, et de gaz porteur (hydrogène ou hélium) de 2 m³/min ou plus.

Note explicative

Ces compresseurs et ces soufflantes à gaz ont généralement un rapport de compression compris entre 1,2/1 et 6/1.

5.5.4. Garnitures d'étanchéité d'arbres

Garnitures spécialement conçues ou préparées, avec connexions d'alimentation et d'échappement, pour assurer de manière fiable l'étanchéité de l'arbre reliant le rotor du compresseur ou de la soufflante à gaz au moteur d'entraînement, en empêchant le gaz de procédé de s'échapper, ou l'air ou le gaz d'étanchéité de pénétrer dans la chambre intérieure du compresseur ou de la soufflante à gaz qui est remplie du mélange d'UF, et de gaz porteur.

5.5.5. Échangeurs de chaleur pour le refroidissement du mélange de gaz

Échangeurs de chaleur spécialement conçus ou préparés, constitués ou revêtus de matériaux résistant à la corrosion par l'UF₆.

5.5.6. Enceintes renfermant les éléments de séparation

Enceintes spécialement conçues ou préparées, constituées ou revêtues de matériaux résistant à la corrosion par l'UF₆, destinées à recevoir les tubes vortex ou les tuyères de séparation.

Note explicative

Ces enceintes peuvent être des conteneurs de forme cylindrique ayant plus de 300 mm de diamètre et plus de 900 mm de long, ou de forme rectangulaire avec des dimensions comparables, et elles peuvent être conçues pour être installées horizontalement ou verticalement.

5.5.7. Systèmes d'alimentation/systèmes de prélèvement du produit et des résidus

Systèmes ou équipements spécialement conçus ou préparés pour les usines d'enrichissement, constitués ou revêtus de matériaux résistant à la corrosion par l'UF₆ et comprenant :

- a. des autoclaves, fours et systèmes d'alimentation utilisés pour introduire l'UF, dans le processus d'enrichissement;
- b. des pièges à froid utilisés pour prélever l'UF₆ du processus d'enrichissement, en vue de son transfert ultérieur après réchauffement ;
- c. des stations de solidification ou de liquéfaction utilisées pour prélever l'UF₆ du processus d'enrichissement, par compression et passage à l'état liquide ou solide;
- d. des stations « Produit » ou « Résidus » pour le transfert de l'UF₆ dans des conteneurs.

5.5.8. Collecteurs/tuyauteries

Tuyauteries et collecteurs constitués ou revêtus de matériaux résistant à la corrosion par l'UF₆, spécialement conçus ou préparés pour la manipulation de l'UF, à l'intérieur des cascades aérodynamiques. La tuyauterie est normalement du type collecteur « double », chaque étage ou groupe d'étages étant connecté à chacun des collecteurs.

5.5.9. Systèmes et pompes à vide

- a. Systèmes à vide spécialement conçus ou préparés, ayant une capacité d'aspiration supérieure ou égale à 5 m³/min, comprenant des distributeurs à vide, des collecteurs à vide et des pompes à vide, et conçus pour fonctionner en atmosphère d'UF_s.
- b. Pompes à vide spécialement conçues ou préparées pour fonctionner en atmosphère d'UF₆, et constituées ou revêtues de matériaux résistant à la corrosion par l'UF₆. Ces pompes peuvent être dotées de joints en fluorocarbures et pourvues de fluides de service spéciaux.

5.5.10. Vannes spéciales d'arrêt et de réglage

Soufflets d'arrêt et de réglage, manuels ou automatiques, constitués ou revêtus de matériaux résistant à la corrosion par l'UF, et ayant un diamètre compris entre 40 et 1 500 mm, spécialement conçus ou préparés pour installation dans des systèmes principaux ou auxiliaires d'usines d'enrichissement par procédé aérodynamique.

5.5.11. Spectromètres de masse pour UF₆/sources d'ions

Spectromètres de masse magnétiques ou quadripolaires spécialement conçus ou préparés, capables de prélever en direct sur les flux d'UF, gazeux des échantillons du gaz d'entrée, du produit ou des résidus, et ayant toutes les caractéristiques suivantes :

- 1) pouvoir de résolution unitaire pour l'unité de masse atomique supérieur à 320;
- 2) sources d'ions constituées ou revêtues de nichrome ou de monel ou nickelées;
- 3) sources d'ionisation par bombardement électronique ;
- 4) collecteur adapté à l'analyse isotopique.

5.5.12. Systèmes de séparation de l'UF₆ et du gaz porteur Systèmes spécialement conçus ou préparés pour séparer l'UF₆ du gaz porteur (hydrogène ou hélium).

Note explicative

Ces systèmes sont conçus pour réduire la teneur en UF₆ du gaz porteur à 1 ppm ou moins et peuvent comprendre les équipements suivants:

- a. échangeurs de chaleur cryogéniques et cryoséparateurs capables d'atteindre des températures inférieures ou égales à − 120 °C ;
- b. appareils de réfrigération cryogéniques capables d'atteindre des températures inférieures ou égales à - 120 °C;
- c. tuyères de séparation ou tubes vortex pour séparer l'UF, du
- d. pièges à froid pour l'UF₆ capables d'atteindre des températures inférieures ou égales à - 20 °C.

5.6. Systèmes, matériel et composants spécialement conçus ou préparés pour utilisation dans les usines d'enrichissement par échange chimique ou par échange d'ions

Note d'introduction

Les différences de masse minimes que présentent les isotopes de l'uranium entraînent de légères différences dans l'équilibre des réactions chimiques, phénomène qui peut être utilisé pour séparer les isotopes. Deux procédés ont été mis au point avec de bons résultats : l'échange chimique liquide-liquide et l'échange d'ions solide-liquide.

Dans le procédé d'échange chimique liquide-liquide, deux phases liquides non miscibles (aqueuse et organique) sont mises en contact par circulation à contre-courant, de façon à obtenir un effet de cascade correspondant à plusieurs milliers d'étages de

séparation. La phase aqueuse est composée de chlorure d'uranium en solution dans de l'acide chlorhydrique; la phase organique est constituée d'un agent d'extraction contenant du chlorure d'uranium dans un solvant organique. Les contacteurs employés dans la cascade de séparation peuvent être des colonnes d'échange liquide-liquide (telles que des colonnes pulsées à plateaux perforés) ou des contacteurs centrifuges liquide-liquide. Des phénomènes chimiques (oxydation et réduction) sont nécessaires à chacune des deux extrémités de la cascade de séparation afin d'y permettre le reflux. L'un des principaux soucis du concepteur est d'éviter la contamination des flux du procédé par certains ions métalliques. On utilise par conséquent des colonnes et des tuyauteries en plastique, revêtues intérieurement de plastique (y compris des fluorocarbures polymères) et/ou revêtues intérieurement de verre.

Dans le procédé d'échange d'ions solide-liquide, l'enrichissement est réalisé par adsorption/désorption de l'uranium sur une résine échangeuse d'ions ou un adsorbant spécial à action très rapide. La solution d'uranium dans l'acide chlorhydrique et d'autres agents chimiques est acheminée à travers des colonnes d'enrichissement cylindriques contenant un garnissage constitué de l'adsorbant. Pour que le processus se déroule de manière continue, il faut qu'un système de reflux libère l'uranium de l'adsorbant pour le remettre en circulation dans la phase liquide, de façon à ce que le produit et les résidus puissent être collectés. Cette opération est effectuée au moyen d'agents chimiques d'oxydoréduction appropriés, qui sont totalement régénérés dans des circuits externes indépendants et peuvent être partiellement régénérés dans les colonnes de séparation proprement dites. En raison de la présence de solutions dans de l'acide chlorhydrique concentré chaud, les équipements doivent être constitués ou revêtus de matériaux spéciaux résistant à la corrosion.

5.6.1. Colonnes d'échange liquide-liquide (échange chimique)

Colonnes d'échange liquide-liquide à contre-courant avec apport d'énergie mécanique (à savoir colonnes pulsées à plateaux perforés, colonnes à plateaux animés d'un mouvement alternatif et colonnes munies de turbo-agitateurs internes), spécialement conçues ou préparées pour l'enrichissement de l'uranium par le procédé d'échange chimique. Afin de les rendre résistantes à la corrosion par les solutions dans de l'acide chlorhydrique concentré, les colonnes et leurs internes sont constitués ou revêtus de matériaux plastiques appropriés (fluorocarbures polymères, par exemple) ou de verre. Les colonnes sont conçues de telle manière que le temps de séjour correspondant à un étage soit court (30 secondes au plus).

5.6.2. Contacteurs centrifuges liquide-liquide (échange chimique)

Contacteurs centrifuges liquide-liquide spécialement conçus ou préparés pour l'enrichissement de l'uranium par le procédé

d'échange chimique. Dans ces contacteurs, la dispersion des flux organique et aqueux est obtenue par rotation, puis la séparation des phases par application d'une force centrifuge. Afin de les rendre résistants à la corrosion par les solutions dans de l'acide chlorhydrique concentré, les contacteurs sont constitués ou revêtus de matériaux plastiques appropriés (fluorocarbures polymères, par exemple) ou revêtus de verre. Les contacteurs centrifuges sont conçus de telle manière que le temps de séjour correspondant à un étage soit court (30 secondes au plus).

5.6.3. Systèmes et équipements de réduction de l'uranium (échange chimique)

a. Cellules de réduction électrochimique spécialement conçues ou préparées pour ramener l'uranium d'un état de valence à un état inférieur, en vue de son enrichissement par le procédé d'échange chimique. Les matériaux de la cellule en contact avec les solutions du procédé doivent être résistants à la corrosion par les solutions dans de l'acide chlorhydrique concentré.

Note explicative

Le compartiment cathodique de la cellule doit être conçu de manière à empêcher que l'uranium ne repasse à la valence supérieure par réoxydation. Afin de maintenir l'uranium dans le compartiment cathodique, la cellule peut être pourvue d'une membrane inattaquable constituée d'un matériau spécial échangeur de cations. La cathode est constituée d'un matériau conducteur solide approprié tel que le graphite.

b. Systèmes situés à l'extrémité de la cascade où est récupéré le produit, spécialement conçus ou préparés pour prélever U4+ sur le flux organique, ajuster la concentration en acide et alimenter les cellules de réduction électrochimique.

Note explicative

Ces systèmes comprennent les équipements d'extraction par solvant permettant de prélever U4+ sur le flux organique pour l'introduire dans la solution aqueuse, les équipements d'évaporation et/ou autres équipements permettant d'ajuster et de contrôler le pH de la solution, ainsi que les pompes ou autres dispositifs de transfert destinés à alimenter les cellules de réduction électrochimique. L'un des principaux soucis du concepteur est d'éviter la contamination du flux aqueux par certains ions métalliques.

Par conséquent, les parties du système qui sont en contact avec le flux du procédé sont composées d'éléments constitués ou revêtus de matériaux appropriés (tels que le verre, les fluorocarbures polymères, le sulfate de polyphényle, le polyéther sulfone et le graphite imprégné de résine).

5.6.4. Systèmes de préparation de l'alimentation (échange chimique)

Systèmes spécialement conçus ou préparés pour produire des

solutions de chlorure d'uranium de grande pureté, destinées à alimenter les usines de séparation des isotopes de l'uranium par échange chimique.

Note explicative

Ces systèmes comprennent les équipements de purification par dissolution, extraction par solvant et/ou échange d'ions, ainsi que les cellules électrolytiques pour réduire l'uranium U⁶⁺ ou U⁴⁺ en U³⁺. Ils produisent des solutions de chlorure d'uranium ne contenant que quelques parties par million d'impuretés métalliques telles que chrome, fer, vanadium, molybdène et autres cations de valence égale ou supérieure à 2. Les matériaux dont sont constituées ou revêtues les parties du système où est traité de l'uranium U³+ de grande pureté comprennent le verre, les fluorocarbures polymères, le sulfate de polyphényle ou le polyéther sulfone et le graphite imprégné de résine.

5.6.5. Systèmes d'oxydation de l'uranium (échange chimique) Systèmes spécialement conçus ou préparés pour oxyder U³⁺ en U⁴⁺ en vue du reflux vers la cascade de séparation des isotopes dans le procédé d'enrichissement par échange chimique.

Note explicative

Ces systèmes peuvent comprendre des appareils des types suivants:

- a. appareils destinés à mettre en contact le chlore et l'oxygène avec l'effluent aqueux provenant de la section de séparation des isotopes et à prélever U4+ qui en résulte pour l'introduire dans l'effluent organique appauvri provenant de l'extrémité de la cascade où est prélevé le produit;
- b. appareils qui séparent l'eau de l'acide chlorhydrique, de façon à ce que l'eau et l'acide chlorhydrique concentré puissent être réintroduits dans le processus aux emplacements appropriés.

5.6.6. Résines échangeuses d'ions/adsorbants à réaction rapide (échange d'ions)

Résines échangeuses d'ions ou adsorbants à réaction rapide spécialement conçus ou préparés pour l'enrichissement de l'uranium par le procédé d'échange d'ions, en particulier résines poreuses macroréticulées et/ou structures pelliculaires dans lesquelles les groupes actifs d'échange chimique sont limités à un revêtement superficiel sur un support poreux inactif, et autres structures composites sous une forme appropriée, et notamment sous forme de particules ou de fibres. Ces articles ont un diamètre inférieur ou égal à 0,2 mm ; du point de vue chimique, ils doivent être résistants aux solutions dans de l'acide chlorhydrique concentré et, du point de vue physique, être suffisamment solides pour ne pas se dégrader dans les colonnes d'échange. Ils sont spécialement conçus pour obtenir de très grandes vitesses d'échange des isotopes de l'uranium (temps de demi-réaction inférieur à 10 secondes) et sont efficaces à des températures comprises entre 100 °C et 200 °C.

5.6.7. Colonnes d'échange d'ions (échange d'ions)

Colonnes cylindriques de plus de 1 000 mm de diamètre contenant un garnissage de résine échangeuse d'ions/d'absorbant, spécialement conçues ou préparées pour l'enrichissement de l'uranium par le procédé d'échange d'ions. Ces colonnes sont constituées ou revêtues de matériaux (tels que le titane ou les plastiques à base de fluorocarbures) résistant à la corrosion par des solutions dans de l'acide chlorhydrique concentré, et peuvent fonctionner à des températures comprises entre 100 °C et 200 °C, et à des pressions supérieures à 0,7 MPa (102 psi).

5.6.8. Systèmes de reflux (échange d'ions)

- a. Systèmes de réduction chimique ou électrochimique spécialement conçus ou préparés pour régénérer l'agent (les agents) de réduction chimique utilisé(s) dans les cascades d'enrichissement de l'uranium par le procédé d'échange d'ions.
- b. Systèmes d'oxydation chimique ou électrochimique spécialement conçus ou préparés pour régénérer l'agent (les agents) d'oxydation chimique utilisé(s) dans les cascades d'enrichissement de l'uranium par le procédé d'échange d'ions.

Note explicative

Dans le procédé d'enrichissement par échange d'ions, on peut par exemple utiliser comme cation réducteur le titane trivalent (Ti³⁺) : le système de réduction régénérerait alors Ti³⁺ par réduction de Ti⁴+. De même, on peut par exemple utiliser comme oxydant le fer trivalent (Fe³⁺): le système d'oxydation régénérerait alors Fe³⁺ par oxydation de Fe²⁺.

5.7. Systèmes, matériel et composants spécialement conçus et préparés pour utilisation dans les usines d'enrichissement par laser

Note d'introduction

Les systèmes actuellement employés dans les procédés d'enrichissement par la ser peuvent être classés en deux catégories, selon le milieu auquel est appliqué le procédé : vapeur atomique d'uranium ou vapeur d'un composé de l'uranium. Ces procédés sont notamment connus sous les dénominations courantes suivantes : première catégorie – séparation des isotopes par laser sur vapeur atomique (SILVA ou AVLIS); seconde catégorie – séparation des isotopes par irradiation au la ser de molécules (SILMO ou MLIS) et réaction chimique par activation laser isotopiquement sélective (CRISLA). Les systèmes, le matériel et les composants utilisés dans les usines d'enrichissement par laser comprennent :

- a. des dispositifs d'alimentation en vapeur d'uranium métal (en vue d'une photo-ionisation sélective) ou des dispositifs d'alimentation en vapeur d'un composé de l'uranium (en vue d'une photodissociation ou d'une activation chimique);
- b. des dispositifs pour recueillir l'uranium métal enrichi (produit) et appauvri (résidus) dans les procédés de la première catégorie et des dispositifs pour recueillir les composés dissociés ou activés (produit) et les matières non modifiées (résidus) dans les procédés de la seconde catégorie;

- c. des systèmes laser de procédé pour exciter sélectivement la forme uranium 235;
- d. des équipements pour la préparation de l'alimentation et pour la conversion du produit. En raison de la complexité de la spectroscopie des atomes d'uranium et des composés de l'uranium, il peut falloir englober les articles utilisés dans tous ceux des procédés laser qui sont disponibles.

Note explicative

Un grand nombre des articles énumérés dans la présente section sont en contact direct soit avec l'uranium métal vaporisé ou liquide, soit avec un gaz de procédé consistant en UF, ou en un mélange d'UF₆ et d'autres gaz. Toutes les surfaces qui sont en contact avec l'uranium ou l'UF₆ sont constituées entièrement ou revêtues de matériaux résistant à la corrosion.

Aux fins de la section relative aux articles pour enrichissement par laser, les matériaux résistant à la corrosion par l'uranium métal ou les alliages d'uranium vaporisés ou liquides sont le graphite revêtu d'oxyde d'yttrium et le tantale ; les matériaux résistant à la corrosion par l'UF sont le cuivre, l'acier inoxydable, l'aluminium, les alliages d'aluminium, le nickel, les alliages contenant 60 % ou plus de nickel et les polymères d'hydrocarbures totalement fluorés résistant à l'UF ..

5.7.1. Systèmes de vaporisation de l'uranium (SILVA)

Systèmes de vaporisation de l'uranium spécialement conçus ou préparés, renfermant des canons à électrons de grande puissance à faisceau en nappe ou à balayage, fournissant une puissance au niveau de la cible supérieure à 2,5 kW/cm.

5.7.2. Systèmes de manipulation de l'uranium métal liquide (SILVA)

Systèmes de manipulation de métaux liquides spécialement conçus ou préparés pour l'uranium ou les alliages d'uranium fondus, comprenant des creusets et des équipements de refroidissement pour les creusets.

Note explicative

Les creusets et autres parties de ces systèmes qui sont en contact avec l'uranium ou les alliages d'uranium fondus sont constitués ou revêtus de matériaux ayant une résistance appropriée à la corrosion et à la chaleur.

Les matériaux appropriés comprennent le tantale, le graphite revêtu d'oxyde d'yttrium, le graphite revêtu d'autres oxydes de terres rares ou des mélanges de ces substances.

5.7.3. Assemblages collecteurs du produit et des résidus d'uranium métal (SILVA)

Assemblages collecteurs du produit et des résidus spécialement conçus ou préparés pour l'uranium métal à l'état liquide ou solide.

Note explicative

Les composants de ces assemblages sont constitués ou revêtus de matériaux résistant à la chaleur et à la corrosion par l'uranium métal vaporisé ou liquide (tels que le graphite recouvert d'oxyde d'yttrium ou le tantale) et peuvent comprendre des tuyaux, des vannes, des raccords, des « gouttières », des traversants, des échangeurs de chaleur et des plaques collectrices utilisées dans les méthodes de séparation magnétique, électrostatique ou autres.

5.7.4. Enceintes de module, séparateur (SILVA)

Conteneurs de forme cylindrique ou rectangulaire spécialement conçus ou préparés pour loger la source de vapeur d'uranium métal, le canon à électrons et les collecteurs du produit et de résidus.

Note explicative

Ces enceintes sont pourvues d'un grand nombre d'orifices pour les barreaux électriques et les traversants destinés à l'alimentation en eau, les fenêtres des faisceaux laser, les raccordements de pompes à vide et les appareils de diagnostic et de surveillance. Elles sont dotées de moyens d'ouverture et de fermeture qui permettent la remise en état des internes.

5.7.5. Tuyères de détente supersonique (SILMO)

Tuyères de détente supersonique, résistant à la corrosion par l'UF₆, spécialement conçues ou préparées pour refroidir les mélanges d'UF₆ et de gaz porteur jusqu'à 150 K ou moins.

5.7.6. Collecteurs du produit (pentafluorure d'uranium) (SILMO)

Collecteurs de pentafluorure d'uranium (UF_c) solide spécialement conçus ou préparés, constitués de collecteurs ou de combinaisons de collecteurs à filtre, à impact ou à cyclone, et résistant à la corrosion en milieu $UF_{\varsigma}/UF_{\epsilon}$.

5.7.7. Compresseurs d'UF_s/gaz porteur (SILMO)

Compresseurs spécialement conçus ou préparés pour les mélanges d'UF₆ et de gaz porteur, prévus pour un fonctionnement de longue durée en atmosphère d'UF₆. Les composants de ces compresseurs qui sont en contact avec le gaz de procédé sont constitués ou revêtus de matériaux résistant à la corrosion par l'UF .

5.7.8. Garnitures d'étanchéité d'arbres (SILMO)

Garnitures spécialement conçues ou préparées, avec connexions d'alimentation et d'échappement, pour assurer de manière fiable l'étanchéité de l'arbre reliant le rotor du compresseur au moteur d'entraînement, en empêchant le gaz de procédé de s'échapper, ou l'air ou le gaz d'étanchéité de pénétrer dans la chambre intérieure du compresseur qui est rempli du mélange UF ¿/gaz porteur.

5.7.9. Systèmes de fluoration (SILMO)

Systèmes spécialement conçus ou préparés pour fluorer l'UF_s (solide) en UF, (gazeux).

Note explicative

Ces systèmes sont conçus pour fluorer la poudre d'UF₅, puis recueillir l'UF_s, dans les conteneurs destinés au produit, ou le réintroduire dans les unités SILMO en vue d'un enrichissement plus poussé. Dans l'une des méthodes possibles, la fluoration peut être réalisée à l'intérieur du système de séparation des isotopes, la réaction et la récupération se faisant directement au niveau des collecteurs du produit. Dans une autre méthode, la poudre d'UF, peut être retirée des collecteurs du produit et transférée dans une enceinte appropriée (par exemple réacteur à lit fluidisé, réacteur hélicoïdal ou tour à flamme) pour y subir la fluoration.

Dans les deux méthodes, on emploie un certain matériel pour le stockage et le transfert du fluor (ou d'autres agents de fluoration appropriés) et pour la collecte et le transfert de l'UF₆.

5.7.10. Spectromètres de masse pour UF_s/sources d'ions (SILMO)

Spectromètres de masse magnétiques ou quadripolaires spécialement conçus ou préparés, capables de prélever en direct sur les flux d'UF, gazeux des échantillons du gaz d'entrée, du produit ou des résidus, et ayant toutes les caractéristiques suivantes :

- 1) pouvoir de résolution unitaire pour l'unité de masse atomique supérieur à 320;
- 2) sources d'ions constituées ou revêtues de nichrome ou de monel ou nickelées :
- 3) sources d'ionisation par bombardement électronique ;
- 4) collecteur adapté à l'analyse isotopique.

5.7.11. Systèmes d'alimentation/systèmes de prélèvement du produit et des résidus (SILMO)

Systèmes ou équipements spécialement conçus ou préparés pour les usines d'enrichissement, constitués ou revêtus de matériaux résistant à la corrosion par l'UF₆ et comprenant :

- a. des autoclaves, fours et systèmes d'alimentation utilisés pour introduire l'UF, dans le processus d'enrichissement;
- b. des pièges à froid utilisés pour retirer l'UF₆ du processus d'enrichissement en vue de son transfert ultérieur après réchauffement:
- c. des stations de solidification ou de liquéfaction utilisées pour retirer l'UF₆ du processus d'enrichissement par compression et passage à l'état liquide ou solide;
- d. des stations « Produit » ou « Résidus » pour le transfert de l'UF₆ dans des conteneurs.

5.7.12. Systèmes de séparation de l'UF, et du gaz porteur

Systèmes spécialement conçus ou préparés pour séparer l'UF, du gaz porteur. Ce dernier peut être l'azote, l'argon ou un autre gaz.

Note explicative

Ces systèmes peuvent comprendre les équipements suivants :

- a. échangeurs de chaleur cryogéniques et cryoséparateurs capables d'atteindre des températures inférieures ou égales à − 120 °C;
- b. appareils de réfrigération cryogéniques capables d'atteindre des températures inférieures ou égales à - 120 °C;
- c. pièges à froid pour l'UF6 capables d'atteindre des températures inférieures ou égales à - 20 °C.

5.7.13. Systèmes laser (SILVA, SILMO et CRISLA)

Lasers ou systèmes laser spécialement conçus ou préparés pour la séparation des isotopes de l'uranium.

Note explicative

Le système laser utilisé dans le procédé SILVA comprend généralement deux lasers: un laser à vapeur de cuivre et un laser à colorant. Le système la ser employé dans le procédé SILMO comprend généralement un laser à CO, ou un laser à excimère et une cellule optique à multipassages munie de miroirs tournants aux deux extrémités. Dans les deux procédés, les lasers et les systèmes laser doivent être munis d'un stabilisateur de fréquence pour pouvoir fonctionner pendant de longues périodes.

5.8. Systèmes, matériel et composants spécialement conçus ou préparés pour utilisation dans les usines d'enrichissement par séparation des isotopes dans un plasma

Note d'introduction

Dans le procédé de séparation dans un plasma, un plasma d'ions d'uranium traverse un champ électrique accordé à la fréquence de résonance des ions ²³⁵U, de sorte que ces derniers absorbent de l'énergie de manière préférentielle et que le diamètre de leurs orbites hélicoïdales s'accroît. Les ions qui suivent un parcours de grand diamètre sont piégés et on obtient un produit enrichi en ²³⁵U. Le plasma, qui est créé en ionisant de la vapeur d'uranium, est contenu dans une enceinte à vide soumise à un champ magnétique de haute intensité produit par un aimant supraconducteur. Les principaux systèmes du procédé comprennent le système générateur du plasma d'uranium, le module séparateur et son aimant supraconducteur et les systèmes de prélèvement de l'uranium métal destinés à collecter le produit et les résidus.

5.8.1. Sources d'énergie hyperfréquence et antennes

Sources d'énergie hyperfréquence et antennes spécialement conçues ou préparées pour produire ou accélérer des ions et ayant les caractéristiques suivantes : fréquence supérieure à 30 GHz et puissance de sortie moyenne supérieure à 50 kW pour la production d'ions.

5.8.2. Bobines excitatrices d'ions

Bobines excitatrices d'ions à haute fréquence spécialement conçues ou préparées pour des fréquences supérieures à 100 kHz et capables de supporter une puissance moyenne supérieure à 40 kW.

5.8.3. Systèmes générateurs de plasma d'uranium

Systèmes de production de plasma d'uranium spécialement conçus ou préparés, pouvant renfermer des canons à électrons de grande puissance à faisceau en nappe ou à balayage, fournissant une puissance au niveau de la cible supérieure à 2,5 kW/cm.

5.8.4. Systèmes de manipulation de l'uranium métal liquide

Systèmes de manipulation de métaux liquides spécialement conçus ou préparés pour l'uranium ou les alliages d'uranium fondus, comprenant des creusets et des équipements de refroidissement pour les creusets.

Note explicative

Les creusets et autres parties de ces systèmes, qui sont en contact avec l'uranium ou les alliages d'uranium fondus, sont constitués ou revêtus de matériaux ayant une résistance appropriée à la corrosion et à la chaleur. Les matériaux appropriés comprennent le tantale, le graphite revêtu d'oxyde d'yttrium, le graphite revêtu d'autres oxydes de terres rares ou des mélanges de ces substances.

5.8.5. Assemblages collecteurs du produit et des résidus d'uranium métal

Assemblages collecteurs du produit et des résidus spécialement conçus ou préparés pour l'uranium métal à l'état solide. Ces assemblages collecteurs sont constitués ou revêtus de matériaux résistant à la chaleur et à la corrosion par la vapeur d'uranium métal, tels que le graphite revêtu d'oxyde d'yttrium ou le tantale.

5.8.6. Enceintes de module séparateur

Conteneurs cylindriques spécialement conçus ou préparés pour les usines d'enrichissement par séparation des isotopes dans un plasma et destinés à loger la source de plasma d'uranium, la bobine excitatrice à haute fréquence et les collecteurs du produit et des résidus.

Note explicative

Ces enceintes sont pourvues d'un grand nombre d'orifices pour les barreaux électriques, les raccordements de pompes à diffusion et les appareils de diagnostic et de surveillance. Elles sont dotées de moyens d'ouverture et de fermeture qui permettent la remise en état des internes et sont constituées d'un matériau non magnétique approprié tel que l'acier inoxydable.

5.9. Systèmes, matériel et composants spécialement conçus et préparés pour utilisation dans les usines d'enrichissement par le procédé électromagnétique

Note d'introduction

Dans le procédé électromagnétique, les ions d'uranium métal produits par ionisation d'un sel (en général UCl) sont accélérés et envoyés à travers un champ magnétique sous l'effet duquel les ions des différents isotopes empruntent des parcours différents.

Les principaux composants d'un séparateur d'isotopes électromagnétique sont les suivants : champ magnétique provoquant la déviation du faisceau d'ions et la séparation des isotopes, source d'ions et son système accélérateur, et collecteurs pour recueillir les ions après séparation.

Les systèmes auxiliaires utilisés dans le procédé comprennent l'alimentation de l'aimant, l'alimentation haute tension de la source d'ions, l'installation de vide et d'importants systèmes de manipulation chimique pour la récupération du produit et l'épuration ou le recyclage des composants.

5.9.1. Séparateurs électromagnétiques

Séparateurs électromagnétiques spécialement conçus ou préparés pour la séparation des isotopes de l'uranium, et matériel et composants pour cette séparation, à savoir en particulier :

a. Sources d'ions

Sources d'ions uranium uniques ou multiples, spécialement conçues ou préparées, comprenant la source de vapeur, l'ionisateur et l'accélérateur de faisceau, constituées de matériaux appropriés comme le graphite, l'acier inoxydable ou le cuivre, et capables de fournir un courant d'ionisation total égal ou supérieur à 50 mA.

b. Collecteurs d'ions

Plaques collectrices comportant des fentes et des poches (deux ou plus), spécialement conçues ou préparées pour collecter les faisceaux d'ions uranium enrichis et appauvris, et constituées de matériaux appropriés comme le graphite ou l'acier inoxydable.

c. Enceintes à vide

Enceintes à vide spécialement conçues ou préparées pour les séparateurs électromagnétiques, constituées de matériaux non magnétiques appropriés comme l'acier inoxydable et conçues pour fonctionner à des pressions inférieures ou égales à 0,1 Pa.

Note explicative

Les enceintes sont spécialement conçues pour renfermer les sources d'ions, les plaques collectrices et les chemises d'eau, et sont dotées des moyens de raccorder les pompes à diffusion et de dispositifs d'ouverture et de fermeture qui permettent de déposer et de reposer ces composants.

d. Pièces polaires

Pièces polaires spécialement conçues ou préparées, de diamètre supérieur à 2 m, utilisées pour maintenir un champ magnétique constant à l'intérieur du séparateur électromagnétique et pour transférer le champ magnétique entre séparateurs contigus.

5.9.2. Alimentations haute tension

Alimentations haute tension spécialement conçues ou préparées pour les sources d'ions et ayant toutes les caractéristiques suivantes : capables de fournir en permanence, pendant une période de huit heures, une tension de sortie égale ou supérieure à 20 000 V avec une intensité de sortie égale ou supérieure à 1 A et une variation de tension inférieure à 0,01 %.

5.9.3. Alimentations des aimants

Alimentations des aimants en courant continu de haute intensité spécialement conçues ou préparées et ayant toutes les caractéristiques suivantes : capables de produire en permanence, pendant une période de huit heures, un courant d'intensité supérieure ou égale à 500 A à une tension supérieure ou égale à 100 V, avec des variations d'intensité et de tension inférieures à 0,01 %.

6. USINES DE PRODUCTION D'EAU LOURDE, DE DEUTÉ-RIUM ET DE COMPOSÉS DE DEUTÉRIUM ; ÉQUIPEMENTS SPÉCIALEMENT CONÇUS OU PRÉPARÉS À CETTE FIN

Note d'introduction

Divers procédés permettent de produire de l'eau lourde. Toutefois, les deux procédés dont il a été prouvé qu'ils sont commercialement viables sont le procédé d'échange eau-sulfure d'hydrogène (procédé GS) et le procédé d'échange ammoniac-hydrogène.

Le procédé GS repose sur l'échange d'hydrogène et de deutérium entre l'eau et le sulfure d'hydrogène dans une série de tours dont la section haute est froide et la section basse chaude. Dans les tours, l'eau s'écoule de haut en bas et le sulfure d'hydrogène gazeux circule de bas en haut. Une série de plaques perforées sert à favoriser le mélange entre le gaz et l'eau. Le deutérium est transféré à l'eau aux basses températures et au sulfure d'hydrogène aux hautes températures.

Le gaz ou l'eau, enrichi en deutérium, est retiré des tours du premier étage à la jonction entre les sections chaudes et froides, et le processus est répété dans les tours des étages suivants. Le produit obtenu au dernier étage, à savoir de l'eau enrichie jusqu'à 30 % en deutérium, est envoyé dans une unité de distillation pour produire de l'eau lourde de qualité réacteur, c'està-dire de l'oxyde de deutérium à 99,75 %. Le procédé d'échange ammoniac-hydrogène permet d'extraire le deutérium d'un gaz de synthèse par contact avec de l'ammoniac liquide en présence d'un catalyseur. Le gaz de synthèse est introduit dans les tours d'échange, puis dans un convertisseur d'ammoniac.

Dans les tours, le gaz circule de bas en haut et l'ammoniac liquide s'écoule de haut en bas. Le deutérium est enlevé à l'hydrogène dans le gaz de synthèse et concentré dans l'ammoniac. L'ammoniac passe ensuite dans un craqueur d'ammoniac au bas de la tour, et le gaz est acheminé vers un convertisseur d'ammoniac en haut de la tour. L'enrichissement se poursuit dans les étages ultérieurs, et de l'eau lourde de qualité réacteur est produite par distillation finale. Le gaz de synthèse d'alimentation peut provenir

d'une usine d'ammoniac qui, elle-même, peut être construite en association avec une usine de production d'eau lourde par échange ammoniac-hydrogène. Dans le procédé d'échange ammoniac-hydrogène, on peut aussi utiliser de l'eau ordinaire comme source de deutérium.

Un grand nombre d'articles de l'équipement essentiel des usines de production d'eau lourde par le procédé GS ou le procédé d'échange ammoniac-hydrogène sont communs à plusieurs secteurs des industries chimique et pétrolière. Ceci est particulièrement vrai pour les petites usines utilisant le procédé GS.

Toutefois, seuls quelques articles sont disponibles « dans le commerce ». Le procédé GS et le procédé d'échange ammoniac-hydrogène exigent la manipulation de grandes quantités de fluides inflammables, corrosifs et toxiques sous haute pression.

En conséquence, pour fixer les normes de conception et d'exploitation des usines et des équipements utilisant ces procédés, il faut accorder une attention particulière au choix et aux spécifications des matériaux, pour garantir une longue durée de service avec des facteurs de sûreté et de fiabilité élevés. Le choix de l'échelle est fonction principalement de considérations économiques et des besoins. Ainsi, la plupart des équipements seront préparés d'après les prescriptions du client.

Enfin, il convient de noter que, tant pour le procédé GS que pour le procédé d'échange ammoniac-hydrogène, des articles d'équipement qui, pris individuellement, ne sont pas spécialement conçus ou préparés pour la production d'eau lourde peuvent être assemblés en des systèmes qui sont spécialement conçus ou préparés pour la production d'eau lourde. On peut en donner comme exemples le système de production du catalyseur utilisé dans le procédé d'échange ammoniac-hydrogène et les systèmes de distillation de l'eau utilisés dans les deux procédés pour la concentration finale de l'eau lourde afin d'obtenir une eau de qualité réacteur.

Articles spécialement conçus ou préparés pour la production d'eau lourde, soit par le procédé d'échange eau-sulfure d'hydrogène, soit par le procédé d'échange ammoniac-hydrogène :

6.1. Tours d'échange eau-sulfure d'hydrogène

Tours d'échange fabriquées en acier au carbone fin (par exemple ASTM A516), ayant un diamètre compris entre 6 m (20 pieds) et 9 m (30 pieds), capables de fonctionner à des pressions supérieures ou égales à 2 MPa (300 psi) et ayant une surépaisseur de corrosion de 6 mm ou plus, spécialement conçues ou préparées pour la production d'eau lourde par le procédé d'échange eausulfure d'hydrogène.

6.2. Soufflantes et compresseurs

Soufflantes ou compresseurs centrifuges à étage unique sous basse pression (c'est-à-dire 0,2 MPa ou 30 psi) pour la circulation de sulfure d'hydrogène (c'est-à-dire un gaz contenant plus de 70 % de H₂S), spécialement conçus ou préparés pour la production d'eau lourde par le procédé d'échange eau-sulfure d'hydrogène. Ces soufflantes ou compresseurs ont une capacité de débit supérieure ou égale à $56\,\mathrm{m}^3/\mathrm{s}$ ($120\,000\,\mathrm{SCFM}$) lorsqu'ils fonctionnent à des pressions d'aspiration supérieures ou égales à 1,8 MPa (260 psi), et sont équipés de joints conçus pour être utilisés en milieu humide en présence de H₂S.

6.3. Tours d'échange ammoniac-hydrogène

Tours d'échange ammoniac-hydrogène d'une hauteur supérieure ou égale à 35 m (114,3 pieds), ayant un diamètre compris entre 1,5 m (4,9 pieds) et 2,5 m (8,2 pieds) et pouvant fonctionner à des pressions supérieures à 15 MPa (2 225 psi), spécialement conçues ou préparées pour la production d'eau lourde par le procédé d'échange ammoniac-hydrogène. Ces tours ont aussi au moins une ouverture axiale à rebord du même diamètre que la partie cylindrique, par laquelle les internes de la tour peuvent être insérés ou retirés.

6.4. Internes de tour et pompes d'étage

Internes de tour et pompes d'étage spécialement conçus ou préparés pour des tours servant à la production d'eau lourde par le procédé d'échange ammoniac-hydrogène. Les internes de tour comprennent des contacteurs d'étage spécialement conçus qui favorisent un contact intime entre le gaz et le liquide. Les pompes d'étage comprennent des pompes submersibles spécialement conçues pour la circulation d'ammoniac liquide dans un étage de contact à l'intérieur des tours.

6.5. Craqueurs d'ammoniac

Craqueurs d'ammoniac ayant une pression de fonctionnement supérieure ou égale à 3 MPa (450 psi), spécialement conçus ou préparés pour la production d'eau lourde par le procédé d'échange ammoniac-hydrogène.

6.6. Analyseurs d'absorption infrarouge

Analyseurs d'absorption infrarouge permettant une analyse en ligne du rapport hydrogène/deutérium lorsque les concentrations en deutérium sont égales ou supérieures à 90 %.

6.7. Brûleurs catalytiques

Brûleurs catalytiques pour la conversion en eau lourde du deutérium enrichi, spécialement conçus ou préparés pour la production d'eau lourde par le procédé d'échange ammoniac-hydrogène.

7. USINES DE CONVERSION DE L'URANIUM ET MATÉRIEL SPÉCIALEMENT CONÇU OU PRÉPARÉ À CETTE FIN

Note d'introduction

Les usines et systèmes de conversion de l'uranium permettent de réaliser une ou plusieurs transformations de l'une des formes chimiques de l'uranium en une autre forme, notamment : conversion des concentrés de minerai d'uranium en UO₃, conversion d'UO₃ en UO2, conversion des oxydes d'uranium en UF4 ou UF6, conversion $de l'UF_4 en UF_6$, conversion $de l'UF_6 en UF_4$, conversion $de l'UF_4 en$ uranium métal et conversion des fluorures d'uranium en UO₂. Un grand nombre des articles de l'équipement essentiel des usines de conversion de l'uranium sont communs à plusieurs secteurs de l'industrie chimique. Par exemple, ces procédés peuvent faire appel à des équipements des types suivants : fours, fourneaux rotatifs, réacteurs à lit fluidisé, tours à flamme, centrifugeuses en phase liquide, colonnes de distillation et colonnes d'extraction liquide-liquide.

Toutefois, seuls quelques articles sont disponibles « dans le commerce » ; la plupart seront préparés d'après les besoins du client et les spécifications définies par lui. Parfois, lors de la conception et de la construction, il faut prendre spécialement en considération les propriétés corrosives de certains des produits chimiques en jeu (HF, F., ClF, et fluorures d'uranium). Enfin, il convient de noter que, dans tous les procédés de conversion de l'uranium, des articles d'équipement qui, pris individuellement, ne sont pas spécialement conçus ou préparés pour la conversion de l'uranium peuvent être assemblés en des systèmes qui sont spécialement conçus ou préparés à cette fin.

7.1. Systèmes spécialement conçus ou préparés pour la conversion des concentrés de minerai d'uranium en UO

Note explicative

La conversion des concentrés de minerai d'uranium en UO₃ peut être réalisée par dissolution du minerai dans l'acide nitrique et extraction de nitrate d'uranyle purifié au moyen d'un solvant tel que le phosphate tributylique. Le nitrate d'uranyle est ensuite converti en UO, soit par concentration et dénitration, soit par neutralisation au moyen de gaz ammoniac, afin d'obtenir du diuranate d'ammonium qui est ensuite filtré, séché et calciné.

7.2. Systèmes spécialement conçus ou préparés pour la conversion d'UO, en UF,

Note explicative

La conversion d'UO3 en UF6 peut être réalisée directement par fluoration. Ce procédé nécessite une source de fluor gazeux ou de trifluorure de chlore.

7.3. Systèmes spécialement conçus ou préparés pour la conversion d'UO, en UO,

Note explicative

La conversion d'UO, en UO, peut être réalisée par réduction de l'UO, au moyen d'ammoniac craqué ou d'hydrogène.

7.4. Systèmes spécialement conçus ou préparés pour la conversion d'UO, en UF,

Note explicative

La conversion d'UO, en UF, peut être réalisée en faisant réagir l'UO, avec de l'acide fluorhydrique gazeux (HF) à une température de 300 à 500 °C.

7.5. Systèmes spécialement conçus ou préparés pour la conversion d'UF, en UF,

Note explicative

La conversion d'UF, en UF, est réalisée par réaction exothermique avec du fluor dans un réacteur à tour. Pour condenser l'UF à partir des effluents gazeux chauds, on fait passer les effluents dans un piège à froid refroidi à - 10 °C. Ce procédé nécessite une source de fluor gazeux.

7.6. Systèmes spécialement conçus ou préparés pour la conversion d'UF, en U métal

Note explicative

La conversion d'UF, en uranium métal est réalisée par réduction au moyen de magnésium (grandes quantités) ou de calcium (petites quantités). La réaction a lieu à des températures supérieures au point de fusion de l'uranium (1 130 °C).

7.7. Systèmes spécialement conçus ou préparés pour la conversion d'UF, en UO,

Note explicative

La conversion d'UF, en UO, peut être réalisée par trois procédés différents. Dans le premier procédé, l'UF₆ est réduit et hydrolysé en UO, au moyen d'hydrogène et de vapeur. Dans le deuxième procédé, l'UF₆ est hydrolysé par dissolution dans l'eau ; l'addition d'ammoniaque à cette solution entraîne la précipitation de diuranate d'ammonium, lequel est réduit en UO, par de l'hydrogène à une température de 820 °C. Dans le troisième procédé, l'UF , le CO , et le NH, gazeux sont mis en solution dans l'eau, ce qui entraîne la précipitation de carbonate double d'uranyle et d'ammonium ; le carbonate est combiné avec de la vapeur et de l'hydrogène à 500-600 °C pour produire de l'UO2. La conversion d'UF6 en UO2 constitue souvent la première phase des opérations dans les usines de fabrication de combustible.

7.8. Systèmes spécialement conçus ou préparés pour la conversion d'UF, en UF,

Note explicative

La conversion d'UF, en UF, est réalisée par réduction au moyen d'hydrogène.